DocumentCode :
2791089
Title :
A modular classification scheme with elastic net models for handwritten digit recognition
Author :
Zhang, Bai-ling ; Fu, Min-yue ; Yan, Hong
Author_Institution :
Dept. of Electr. & Comput. Eng., Newcastle Univ., NSW, Australia
Volume :
2
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
1859
Abstract :
This paper describes a modular classification system for handwritten digit recognition based on the elastic net model. We use ten separate elastic nets to capture different features in the ten classes of handwritten digits and represent an input sample from the activations in each net by population decoding. Compared with traditional neural networks based discriminant classifiers, our scheme features fast training and high recognition accuracy
Keywords :
handwritten character recognition; learning (artificial intelligence); neural nets; optimisation; pattern classification; elastic net models; feature extraction; global optimisation; handwritten digit recognition; learning algorithm; modular classification; population decoding; topological maps; Australia; Constraint optimization; Convergence; Cost function; Decoding; Deformable models; Handwriting recognition; Neural networks; Prototypes; Surface topography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.712093
Filename :
712093
Link To Document :
بازگشت