Title :
Context-based knowledge support for problem-solving by rule-inference and case-based reasoning
Author :
Liu, Duen-Ren ; Ke, Chih-Kun ; Wu, Mei-Yu
Author_Institution :
Inst. of Inf. Manage., Nat. Chiao Tung Univ., Hsinchu
Abstract :
Problem-solving is an important process that enables corporations to create competitive business advantages. Traditionally, case-based reasoning techniques have been widely used to help workers solve problems. However, conventional approaches focus on identifying similar problems without exploring relevant context of problem situations. Situation features are generally occurred according to the context characteristics of problem. Moreover, situation features collected are usually partial or incomplete. Workers need to use knowledge inferred from relevant context information and previous problem-solving experience to clarify the causes and take appropriate action effectively. In this paper, we propose to use rule inference to infer possible situation features based on context information. Association rule mining is used to discover context-based inference rules from historical problem-solving logs. The discovered patterns identify frequent associations between context information and situation features, and therefore can be used to infer more situation features. By considering the inferred situation features, case-based reasoning can then be employed to identify similar situations effectively. Moreover, we employ information retrieval techniques to extract context-based situation profiles to model workerspsila information needs when handling problem situations in certain context. Effective knowledge support can thus be facilitated by providing workers with situation-relevant information based on the profiles.
Keywords :
case-based reasoning; data mining; information retrieval; association rule mining; case-based reasoning; competitive business advantages; context-based inference rules; context-based knowledge support; information retrieval; problem-solving; rule-inference; situation-relevant information; Association rules; Communication industry; Context modeling; Cybernetics; Data mining; Information management; Information retrieval; Machine learning; Problem-solving; Production systems; Case-based reasoning; Data mining; Information retrieval; Problem solving; Rule inference;
Conference_Titel :
Machine Learning and Cybernetics, 2008 International Conference on
Conference_Location :
Kunming
Print_ISBN :
978-1-4244-2095-7
Electronic_ISBN :
978-1-4244-2096-4
DOI :
10.1109/ICMLC.2008.4620959