DocumentCode :
2794404
Title :
Parametric dictionary learning using steepest descent
Author :
Ataee, Mahdi ; Zayyani, Hadi ; Babaie-Zadeh, Massoud ; Jutten, Christian
Author_Institution :
Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran
fYear :
2010
fDate :
14-19 March 2010
Firstpage :
1978
Lastpage :
1981
Abstract :
In this paper, we suggest to use a steepest descent algorithm for learning a parametric dictionary in which the structure or atom functions are known in advance. The structure of the atoms allows us to find a steepest descent direction of parameters instead of the steepest descent direction of the dictionary itself. We also use a thresholded version of Smoothed-ℓ0 (SL0) algorithm for sparse representation step in our proposed method. Our simulation results show that using atom structure similar to the Gabor functions and learning the parameters of these Gabor-like atoms yield better representations of our noisy speech signal than non parametric dictionary learning methods like K-SVD, in terms of mean square error of sparse representations.
Keywords :
gradient methods; learning (artificial intelligence); signal representation; speech processing; Gabor functions; Gabor-like atoms; K-SVD; Smoothed-ℓ0 algorithm; atom structure; noisy speech signal representation; parametric dictionary learning method; sparse component analysis; steepest descent algorithm; Compressed sensing; Dictionaries; Discrete cosine transforms; Learning systems; Mean square error methods; Signal analysis; Signal design; Signal processing algorithms; Sparse matrices; Speech analysis; Dictionary learning; Sparse Component Analysis; Sparse representation; parametric dictionary;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on
Conference_Location :
Dallas, TX
ISSN :
1520-6149
Print_ISBN :
978-1-4244-4295-9
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2010.5495278
Filename :
5495278
Link To Document :
بازگشت