DocumentCode :
2794531
Title :
A SIFT descriptor with local kernel color histograms
Author :
Li, Dandan ; Ke, Yongzhen ; Zhang, Guiling
Author_Institution :
Sch. of Comput. Sci. & Software, Tianjin Polytech. Univ., Tianjin, China
fYear :
2011
fDate :
15-17 July 2011
Firstpage :
992
Lastpage :
995
Abstract :
SIFT (Scale Invariant Feature Transform) has proved to be the most robust local invariant feature descriptor in object recognition and matching. Being designed mainly for the gray images, SIFT shows its vulnerability when deal with color images. To overcome this problem and increase the descriptor´s distinctiveness, we introduce a new descriptor, a combination of the SIFT approach and the improved local kernel color histograms, which shows a better performance than the original SIFT through experiments. Moreover, the experiments results show that the radio of correct matches increase and the mismatch radio remain constant simultaneously.
Keywords :
image colour analysis; image matching; object recognition; transforms; SIFT descriptor; local kernel color histograms; object matching; object recognition; robust local invariant feature descriptor; scale invariant feature transform; Color; Colored noise; Histograms; Image color analysis; Kernel; Quantization; Robustness; SIFT; image matching; local kernel color histograms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on
Conference_Location :
Hohhot
Print_ISBN :
978-1-4244-9436-1
Type :
conf
DOI :
10.1109/MACE.2011.5987099
Filename :
5987099
Link To Document :
بازگشت