DocumentCode :
2795257
Title :
General Mandelbrot Sets and Julia Sets Generated from Non-analytic Complex Iteration F_m(z)=z^n+c
Author :
Yan, Dejun ; Zhang, Junxing ; Jiang, Nan ; Wang, Lidong
Author_Institution :
Res. Inst. of Non-linear Inf. Technol., Dalian Nat. Univ., Dalian, China
fYear :
2009
fDate :
6-8 Nov. 2009
Firstpage :
395
Lastpage :
398
Abstract :
In this paper we investigate the general Mandelbrot sets and Julia sets generated from non-analytic complex iteration fm(z)=z¿m+c. We use the escaping time algorithm and the periodic scanning algorithm to construct the general Mandelbrot set and its local enlargement. We find that general Mandelbrot sets are symmetrical by reflection in the real axis, and has (m+1)- fold rotational symmetry around 0, the Julia sets have m-fold structures. Similar to the analytic complex iterated function systems, the general Mandelbrot sets are kinds of mathematical dictionary or atlas that map out the behavior of the Julia sets for different values of c.
Keywords :
computational geometry; computer graphics; fractals; iterative methods; large-scale systems; nonlinear systems; set theory; Julia sets; Mandelbrot sets; analytic complex iterated function systems; dynamical systems; escaping time algorithm; fold rotational symmetry; m-fold structures; mathematical atlas; mathematical dictionary; nonanalytic complex iteration; periodic scanning algorithm; Chaos; Convergence; Dictionaries; Eigenvalues and eigenfunctions; Fractals; H infinity control; Information technology; Jacobian matrices; Reflection; Symmetric matrices; Julia set; general Mandelbrot set; non-analytic complex iteration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Chaos-Fractals Theories and Applications, 2009. IWCFTA '09. International Workshop on
Conference_Location :
Shenyang
Print_ISBN :
978-0-7695-3853-2
Type :
conf
DOI :
10.1109/IWCFTA.2009.89
Filename :
5362044
Link To Document :
بازگشت