Title :
Performance-constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters
Author :
Ge, Rong ; Feng, Xizhou ; Cameron, Kirk W.
Author_Institution :
University of South Carolina, Columbia
Abstract :
Left unchecked, the fundamental drive to increase peak performance using tens of thousands of power hungry components will lead to intolerable operating costs and failure rates. High-performance, power-aware distributed computing reduces power and energy consumption of distributed applications and systems without sacrificing performance. Generally, we use DVS (Dynamic Voltage Scaling) technology now available in high-performance microprocessors to reduce power consumption during parallel application runs when peak CPU performance is not necessary due to load imbalance, communication delays, etc. We propose distributed performance-directed DVS scheduling strategies for use in scalable power-aware HPC clusters. By varying scheduling granularity we can obtain significant energy savings without increasing execution time (36% for FT from NAS PB). We created a software framework to implement and evaluate our various techniques and show performance-directed scheduling consistently saves more energy (nearly 25% for several codes) than comparable approaches with less impact on execution time (< 5%). Additionally, we illustrate the use of energy-delay products to automatically select distributed DVS schedules that meet users’ needs.
Keywords :
Costs; Delay; Distributed computing; Dynamic voltage scaling; Energy consumption; Lead; Microprocessors; Processor scheduling; Software performance; Voltage control;
Conference_Titel :
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference
Print_ISBN :
1-59593-061-2