DocumentCode :
2800328
Title :
Dimension Reduction Methods for Image Retrieval
Author :
Moravec, Pavel ; Sna, Vaclav
Author_Institution :
Dept. of Comput. Sci., Tech. Univ. of Ostrava, Ostrava-Poruba
Volume :
2
fYear :
2006
fDate :
16-18 Oct. 2006
Firstpage :
1055
Lastpage :
1060
Abstract :
In this paper, we compare performance of several dimension reduction techniques, namely LSI, NMF, SDD and FastMap. The qualitative comparison is based on rank lists and evaluated on a collection of faces from the Olivetti Research Lab. We compare the quality of these methods from both the visual impact, quality of generated "eigenfaces" and retrieval performance
Keywords :
eigenvalues and eigenfunctions; image reconstruction; image retrieval; matrix algebra; FastMap; LSI; NMF; SDD; dimension reduction; eigenfaces; image retrieval; Bellows; Computer science; Image retrieval; Information retrieval; Large scale integration; Matrix decomposition; Principal component analysis; Singular value decomposition; Testing; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems Design and Applications, 2006. ISDA '06. Sixth International Conference on
Conference_Location :
Jinan
Print_ISBN :
0-7695-2528-8
Type :
conf
DOI :
10.1109/ISDA.2006.253757
Filename :
4021809
Link To Document :
بازگشت