DocumentCode :
2802794
Title :
Upper bounds for commutative group codes: the odd case
Author :
Monteiro de Siqueira, R. ; Costa, Sueli I Rodrigues
Author_Institution :
UNICAMP, Sao Paulo
fYear :
2006
fDate :
3-6 Sept. 2006
Firstpage :
367
Lastpage :
369
Abstract :
Good spherical codes must have large minimum squared distance. An important quota in the theory of spherical codes is the maximum number of points M(n,p) displayed on the sphere Sn -1, having a minimum squared distance p. The aim of this work is to study this problem restricted to the class of group codes. We establish a tighter bound for the number of points of a commutative group code in odd dimension, extending the bounds of [6].
Keywords :
group codes; group theory; matrix algebra; commutative group code; matrix algebra; minimum squared distance; spherical code; Lattices; Mathematics; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Telecommunications Symposium, 2006 International
Conference_Location :
Fortaleza, Ceara
Print_ISBN :
978-85-89748-04-9
Electronic_ISBN :
978-85-89748-04-9
Type :
conf
DOI :
10.1109/ITS.2006.4433300
Filename :
4433300
Link To Document :
بازگشت