DocumentCode :
2804538
Title :
Unsupervised classification of skeletal fibers using diffusion maps
Author :
Neji, R. ; Langs, G. ; Deux, J.-F. ; Maatouk, M. ; Rahmouni, A. ; Bassez, G. ; Fleury, G. ; Paragios, N.
fYear :
2009
fDate :
June 28 2009-July 1 2009
Firstpage :
410
Lastpage :
413
Abstract :
In this paper, we propose an application of diffusion maps to fiber tract clustering in the human skeletal muscle. To this end, we define a metric between fiber tracts that encompasses both diffusion and localization information. This metric is incorporated in the diffusion maps framework and clustering is done in the embedding space using k-means. Experimental validation of the method is performed over a dataset of diffusion tensor images of the calf muscle of thirty subjects and comparison is done with respect to ground-truth segmentation provided by an expert.
Keywords :
biomedical MRI; image classification; image segmentation; muscle; MRI; calf muscle; diffusion maps; diffusion tensor image; fiber tract clustering; ground-truth segmentation; human skeletal muscle; localization; skeletal fibers; unsupervised classification; Biomedical imaging; Diffusion tensor imaging; Diseases; Humans; Image segmentation; Kernel; Muscles; Radiology; Spatial coherence; Tensile stress; DTI; Diffusion Maps; Fiber Metrics; Fibers; Human Skeletal Muscle;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on
Conference_Location :
Boston, MA
ISSN :
1945-7928
Print_ISBN :
978-1-4244-3931-7
Electronic_ISBN :
1945-7928
Type :
conf
DOI :
10.1109/ISBI.2009.5193071
Filename :
5193071
Link To Document :
بازگشت