DocumentCode :
2804597
Title :
Linear image registration through MRF optimization
Author :
Glocker, Ben ; Zikic, Darko ; Komodakis, Nikos ; Paragios, Nikos ; Navab, Nassir
fYear :
2009
fDate :
June 28 2009-July 1 2009
Firstpage :
422
Lastpage :
425
Abstract :
We propose a Markov Random Field formulation for the linear image registration problem. Transformation parameters are represented by nodes in a fully connected graph where the edges model pairwise dependencies. Parameter estimation is then solved through iterative discrete labeling and discrete optimization while a label space refinement strategy is employed to achieve sub-millimeter accuracy. Our framework can encode any similarity measure, allows for automatic reduction of the degrees of freedom by simple changes on the MRF topology, and is robust to initialization. Promising results on real data and random studies demonstrate the potential of our approach.
Keywords :
Markov processes; biomedical MRI; brain; computerised tomography; image registration; medical image processing; optimisation; parameter estimation; random processes; CT imaging; MR imaging; Markov random field; brain; discrete optimization; fully connected graph; iterative discrete labeling; label space refinement; linear image registration; parameter estimation; transformation parameters; Anisotropic magnetoresistance; Biomedical imaging; Computer science; Image registration; Markov random fields; Matrix decomposition; Mutual information; Optimization methods; Robustness; Shearing; Discrete Optimization; Linear Image Registration; Markov Random Fields;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on
Conference_Location :
Boston, MA
ISSN :
1945-7928
Print_ISBN :
978-1-4244-3931-7
Electronic_ISBN :
1945-7928
Type :
conf
DOI :
10.1109/ISBI.2009.5193074
Filename :
5193074
Link To Document :
بازگشت