Title :
Optimal sensor placement for forward kinematics evaluation of a 6-DOF parallel link manipulator
Author :
Stoughton, Robert ; Arai, Tatsuo
Author_Institution :
Mech. Eng. Lab., Ibaraki, Japan
Abstract :
A design for a 6-DOF parallel actuated robot is presented. The design is a generalization of the Stewart-platform, and has the potential for improved dexterity compared with the traditional design. Methods for handling the forward kinematics problem are discussed. These methods include approximate linear analysis using numerical integration of the Jacobian matrix, and the use of redundant position sensors. There are several alternative locations for placement of these sensors. The accuracy and complexity of the computations for the forward kinematics vary with different locations of the sensors. Further, for some configurations it is possible to continue operation when one more sensors are lost or damaged, leading to a more robust design for remote operations
Keywords :
kinematics; robots; 6-DOF parallel link manipulator; 6-d.o.f. manipulator; Jacobian matrix; Stewart-platform; approximate linear analysis; forward kinematics evaluation; numerical integration; optimal sensor placement; parallel actuated robot; redundant position sensors; Assembly; Closed-form solution; Couplings; End effectors; Jacobian matrices; Kinematics; Leg; Manipulators; Parallel robots; Robot sensing systems;
Conference_Titel :
Intelligent Robots and Systems '91. 'Intelligence for Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International Workshop on
Conference_Location :
Osaka
Print_ISBN :
0-7803-0067-X
DOI :
10.1109/IROS.1991.174577