• DocumentCode
    2809366
  • Title

    Robust matching pursuit for recovery of Gaussian sparse signal

  • Author

    Chatterjee, Saikat ; Sundman, Dennis ; Skoglund, Mikael

  • Author_Institution
    Commun. Theor. Lab., KTH - R. Inst. of Technol., Stockholm, Sweden
  • fYear
    2011
  • fDate
    4-7 Jan. 2011
  • Firstpage
    420
  • Lastpage
    424
  • Abstract
    For compressive sensing (CS) recovery of Gaussian sparse signal, we explore the framework of Bayesian linear models to achieve a robust reconstruction performance in the presence of measurement noise. Using a priori statistical knowledge, we develop a minimum mean square error (MMSE) estimation based iterative greedy search algorithm. Through experimental evaluations, we show that the new algorithm provides a robust CS reconstruction performance compared to an existing least square based algorithm.
  • Keywords
    Bayes methods; Gaussian processes; iterative methods; least mean squares methods; search problems; signal reconstruction; Bayesian linear models; Gaussian sparse signal recovery; MMSE; a priori statistical knowledge; compressive sensing recovery; iterative greedy search algorithm; measurement noise; minimum mean square error estimation; robust matching; robust reconstruction performance; Artificial intelligence; Bayesian methods; Compressed sensing; Matching pursuit algorithms; Noise; Noise measurement; Signal processing algorithms; MMSE estimation; Orthogonal matching pursuit; compressive sensing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 2011 IEEE
  • Conference_Location
    Sedona, AZ
  • Print_ISBN
    978-1-61284-226-4
  • Type

    conf

  • DOI
    10.1109/DSP-SPE.2011.5739251
  • Filename
    5739251