• DocumentCode
    2810079
  • Title

    Reduced Complexity Belief Propagation Algorithm Based on Iterative Groupwise Multiuser Detection

  • Author

    Bavarian, Sara ; Cavers, James K.

  • Author_Institution
    Simon Fraser Univ., Burnaby
  • fYear
    2007
  • fDate
    22-26 April 2007
  • Firstpage
    466
  • Lastpage
    468
  • Abstract
    We propose a new method to reduce the complexity of belief propagation algorithm (BP) using an iterative groupwise multiuser detection approach. Replacing the optimal joint maximum a posteriori (JMAP) detectors in BP function nodes by the iterative multiuser detection algorithm (IMUD) reduces the computational load of BP. We explain why IMUD is a good choice for this task and investigate the performance of this reduced complexity BP via simulation.
  • Keywords
    belief maintenance; computational complexity; iterative methods; belief propagation algorithm; iterative groupwise multiuser detection; iterative multiuser detection algorithm; Belief propagation; Computational complexity; Computational modeling; Detectors; Frequency; Graphical models; Iterative algorithms; Iterative methods; Multiuser detection; Parity check codes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on
  • Conference_Location
    Vancouver, BC
  • ISSN
    0840-7789
  • Print_ISBN
    1-4244-1020-7
  • Electronic_ISBN
    0840-7789
  • Type

    conf

  • DOI
    10.1109/CCECE.2007.123
  • Filename
    4232782