Title :
History, presence and future of gyrotrons
Author_Institution :
Assoc. EURATOM-FZK, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Abstract :
Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), current drive (ECCD), stability control and diagnostics of magnetically confined fusion plasmas. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European FZK-CRPP-CEA-TED Collaboration), at 44% efficiency, employing a single-stage depressed collector for energy recovery. The Japan 170 GHz ITER gyrotron holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 55% at 1 MW, 800 s for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.83 MW with a pulse duration of 203 s. Russian gyrotrons for plasma diagnostics or spectroscopy applications deliver Pout = 40 kW with tau = 40 mus at frequencies up to 650 GHz (eta > 4%), and Pout = 0.5 kW at 1.3 THz (eta = 0.7%). Gyrotron oscillators have also been successfully used in materials processing and ECR multi-charged heavy ion sources. Such technological applications require gyrotrons with the following parameters: int > 24 GHz , Pout = 4-50 kW, CW, eta > 30%. This paper gives a short review of the history of gyrotrons, an update of the present experimental achievements and an outlook into future developments of multi-megawatt coaxial-cavity gyrotrons, frequency-step tunable gyrotrons and gyrotrons for specific technological and spectroscopic applications.
Keywords :
convertors; gyrotrons; heavy ion fusion reactions; millimetre wave oscillators; plasma diagnostics; plasma radiofrequency heating; ECR multi-charged heavy ion sources; ITER gyrotron; Russian gyrotrons; current drive; electron cyclotron resonance heating; frequency 140 GHz; frequency 170 GHz; frequency 650 GHz; frequency-step tunable gyrotrons; gyromonotrons; gyrotron oscillators; high-power millimeter wave sources; magnetically-confined fusion plasma diagnostics; megawatt-class gyrotrons; multimegawatt coaxial-cavity gyrotrons; power 0.8 MW; power 1 MW; single-stage depressed collector; spectroscopy applications; stability control; synthetic diamond output windows; time 60 min; time 800 s; Gyrotrons; History; Magnetic confinement; Magnetic resonance; Oscillators; Plasma confinement; Plasma diagnostics; Plasma stability; Spectroscopy; Time of arrival estimation; Gyrotrons; Millimeter Wave; Millimeter Wave Materials Processing; Nuclear Fusion Plasma Heating and Diagnostics; THz Spectroscopy;
Conference_Titel :
Vacuum Electronics Conference, 2009. IVEC '09. IEEE International
Conference_Location :
Rome
Print_ISBN :
978-1-4244-3500-5
Electronic_ISBN :
978-1-4244-3501-2
DOI :
10.1109/IVELEC.2009.5193351