Title :
Automotive engine misfire detection using Kalman filtering
Author :
Lee, Anson ; Loh, Robert N K ; Wu, Zhijian James
Author_Institution :
DaimlerChrysler Corp., Auburn Hills, MI, USA
Abstract :
This paper presents a new approach to misfire detection using system parameter estimation techniques. A mathematical model has been developed for the engine firing system. The resulting model contains many unknown parameters or coefficients. A system parameter identification technique employing a Kalman filter is then developed to estimate all the unknown parameters based on actual vehicle test data. The paper shows that the new Kalman filter approach for misfire detection has greatly enhanced the detection accuracy and reduced the false alarm rate of current misfire detection systems.
Keywords :
Kalman filters; internal combustion engines; parameter estimation; vehicles; Kalman filtering; automotive engine misfire detection; engine firing system; parameter estimation techniques; vehicle test data; Automotive engineering; Combustion; Digital control; Engines; Filtering; Fuels; Kalman filters; Manufacturing; Parameter estimation; Vehicles;
Conference_Titel :
Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th
Print_ISBN :
0-7803-7954-3
DOI :
10.1109/VETECF.2003.1286315