Title :
Adaptive compensation of modeled friction using a RBF neural network approximation
Author :
Vitiello, Valentina ; Tornambé, Antonio
Author_Institution :
Univ. di Roma Tor Vergata, Rome
Abstract :
We present a compensation technique for a friction model, which captures problematic friction effects such as Stribeck effect, hysteresis, pre-sliding displacement, stick- slip motion and stiction. The proposed control utilizes a PD control structure and an adaptive estimate of the friction force. Specifically, a radial basis function (RBF) is used to compensate the effects of the non-linear friction model. The asymptotic convergence of parameter estimation errors is achieved for the system in adaptive observer form using Barbalat´s Lemma. We also introduce a parameter estimation projection algorithm to avoid the parameter estimates drift when the condition of persistency of excitation is not verified. Finally, to support the theoretical concepts, we present dynamic simulations for the proposed control scheme.
Keywords :
PD control; adaptive control; compensation; convergence; friction; hysteresis; mechanical variables control; neurocontrollers; parameter estimation; radial basis function networks; PD control; RBF neural network approximation; Stribeck effect; adaptive compensation; asymptotic convergence; hysteresis; nonlinear friction model; parameter estimation errors; presliding displacement; radial basis function; stick-slip motion; stiction; Adaptive control; Adaptive systems; Convergence; Force control; Friction; Hysteresis; Neural networks; PD control; Parameter estimation; Programmable control;
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2007.4434037