Title :
Evolutionary feature selection and electrode reduction for EEG classification
Author :
Atyabi, Adham ; Luerssen, Martin ; Fitzgibbon, Sean ; Powers, David M W
Author_Institution :
Sch. of Comput. Sci., Eng., & Math., Flinders Univ., Adelaide, SA, Australia
Abstract :
EEG signals usually have a high dimensionality which makes it difficult for classifiers to learn the difference of various classes in the underlying pattern in the signal. This paper investigates several evolutionary algorithms used to reduce the dimensionality of the data. The study presents electrode and feature reduction methods based on Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Evolution-based methods are used to generate a set of indexes presenting either electrode seats or feature points that maximizes the output of a weak classifier. The results are interpreted based on the dimensionality reduction achieved, the significance of the lost accuracy, and the possibility of improving the accuracy by passing the chosen electrode/feature sets to alternative classifiers.
Keywords :
biomedical electrodes; electroencephalography; feature extraction; genetic algorithms; medical signal processing; particle swarm optimisation; signal classification; EEG classification; EEG signal; GA; PSO; data dimensionality reduction; electrode reduction; evolution-based method; evolutionary algorithm; evolutionary feature selection; feature points; feature reduction method; genetic algorithms; particle swarm optimization; weak classifier; Electrodes; Electroencephalography; Genetic algorithms; Indexes; Support vector machines; Testing; Training;
Conference_Titel :
Evolutionary Computation (CEC), 2012 IEEE Congress on
Conference_Location :
Brisbane, QLD
Print_ISBN :
978-1-4673-1510-4
Electronic_ISBN :
978-1-4673-1508-1
DOI :
10.1109/CEC.2012.6256130