DocumentCode :
2815254
Title :
The recursive algorithm for Riccati matrix and the equivalent action
Author :
Guo, Shiwei ; Lin, Jianhui
Author_Institution :
Dept. of Mech. Eng., Emei Campus of Southwest Jiaotong Univ., Emei, China
fYear :
2011
fDate :
15-17 July 2011
Firstpage :
5402
Lastpage :
5405
Abstract :
Linear quadratic optimal control and Kalman filtering problem can be described by Hamiltonian dual equations uniformly. Based on the T-parameter solution of Hamiltonian dual equations, the recursive formulas for Riccati matrix and the equivalent action were deduced. The backward and forward recursive algorithms were presented for the nodal variables of multiple segments system, and the recursive algorithms can be applied in linear quadratic optimal control and Kalman filtering problem.
Keywords :
Kalman filters; Riccati equations; linear quadratic control; matrix algebra; optimal control; recursive estimation; Hamiltonian dual equations; Kalman filtering problem; Riccati matrix; T-parameter solution; equivalent action; linear quadratic optimal control; multiple segments system; recursive algorithm; Control theory; Education; Equations; Kalman filters; Optimal control; Presses; Hamiltonian Dual Equation; Kalman Filtering; Linear quadratic optimal control; Recursive Algorithm; Riccati Matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on
Conference_Location :
Hohhot
Print_ISBN :
978-1-4244-9436-1
Type :
conf
DOI :
10.1109/MACE.2011.5988215
Filename :
5988215
Link To Document :
بازگشت