Title :
Root-mean-square gains of switched linear systems: A variational approach
Author :
Margaliot, Michael ; Hespanha, João P.
Author_Institution :
Tel Aviv Univ., Tel Aviv
Abstract :
We consider the problem of computing the root- mean-square (RMS) gain of switched linear systems. We develop a new approach which is based on an attempt to characterize the "worst-case" switching law (WCSL), that is, the switching law that yields the maximal possible gain. Our main result provides a sufficient condition guaranteeing that the WCSL can be characterized explicitly using the differential Riccati equations corresponding to the linear subsystems. This condition automatically holds for first-order systems, so we obtain a complete solution to the RMS gain problem in this case. In particular, we show that in the first-order case there always exists a WCSL with no more than two switches.
Keywords :
Riccati equations; differential equations; mean square error methods; optimisation; stability; time-varying systems; variational techniques; differential Riccati equation; first-order systems; maximal gain; root mean square gain; stability; switched linear system; variational approach; worst-case switching law; Control systems; Differential equations; Gain; Linear systems; Optimal control; Riccati equations; Signal analysis; Switched systems; Switches; USA Councils;
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2007.4434069