DocumentCode :
2815921
Title :
A hidden Markov model-based methodology for intra-field video deinterlacing
Author :
Behnad, Amin ; Plataniotis, Konstantinos N. ; Wu, Xiaolin
Author_Institution :
Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1189
Lastpage :
1192
Abstract :
This paper presents a new technique of hidden Markov model (HMM) for video deinterlacing. Existing deinterlacing algorithms estimate missing pixels of an absent row in an interlaced frame on a sample-by-sample basis. In contrast, the proposed HMM-based deinterlacing technique adopts an approach of sequence estimation and makes a joint decision on the row of missing pixels as a whole. This allows a more thorough exploitation of the spatial correlation of the image signal. The HMM-based sequence estimation technique is coupled with a number of existing spatial deinterlacing algorithms in the literature to boost their performance. Experimental results show that HMM can significantly improve the deinterlacing results in both PSNR measure and subjective visual quality.
Keywords :
hidden Markov models; interpolation; video signal processing; HMM; hidden Markov model-based methodology; intra-field video deinterlacing; sequence estimation; spatial correlation; Conferences; Estimation; Hidden Markov models; Image edge detection; Interpolation; TV; Deinterlacing; hidden Markov model; interpolation; sequence estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115643
Filename :
6115643
Link To Document :
بازگشت