DocumentCode :
2816090
Title :
Learning complex image patterns with Scale and Shift Invariant Sparse Coding
Author :
Liu, Xiaobing ; Zhang, Bo
Author_Institution :
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
1225
Lastpage :
1228
Abstract :
The image patches learned by recent works are usually only bar-like or Gabor-like patterns. However those simple patterns are not meaningful enough to capture higher level information. In this study, we try to learn more complex image patterns from unaligned images. We propose Scale And Shift Invariant Sparse Coding (SASISC), which aligns basis patches at proper locations and scales to reconstruct the whole image. The experiment results on unaligned images show that SASISC can explain the images much better than the original sparse coding, and can extract more complex image patterns.
Keywords :
image coding; image representation; learning (artificial intelligence); sparse matrices; Gabor-like patterns; SASISC; bar-like patterns; complex image patterns; image patches; image representation; scale and shift invariant sparse coding; Conferences; Dictionaries; Encoding; Image coding; Image reconstruction; Prototypes; Complex Image Pattern; Scale Invariant; Shift Invariant; Sparse Coding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6115653
Filename :
6115653
Link To Document :
بازگشت