Title :
Motion planning for a quantized control system on SO(3)
Author :
Arsie, Alessandro ; Frazzoli, Emilio
Author_Institution :
Massachusetts Inst. of Technol., Cambridge
Abstract :
We present an analysis of the motion planning problem for a driftless quantized control system on SO(3). The system under investigation depends on two control quanta, beta1 and beta2. We are able to provide efficient finite complexity motion plans which steer the system arbitrarily close to any given target configuration as soon as at least one of the two control quanta satisfies a strong approximating property of number theoretic nature. On the other hand we prove that whenever both control quanta do not satisfy this strong approximating property, then in order to reach a configuration arbitrarily close to any given target configuration it is necessary to use motion plans of unbounded complexity.
Keywords :
approximation theory; motion control; number theory; path planning; approximating property; control quanta; driftless quantized control system; finite complexity motion plans; motion planning; number theory; unbounded complexity; Control system synthesis; Control systems; Discrete event systems; Encoding; Feedback; Motion analysis; Motion control; Resonance; State-space methods; USA Councils;
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2007.4434381