DocumentCode :
2821663
Title :
Time complexity and input design in worst-case identification using binary sensors
Author :
Casini, Marco ; Garulli, Andrea ; Vicino, Antonio
Author_Institution :
Univ. di Siena, Siena
fYear :
2007
fDate :
12-14 Dec. 2007
Firstpage :
5528
Lastpage :
5533
Abstract :
This paper addresses system identification using binary-valued sensors in a worst-case setting. The first contribution is an upper bound on time complexity for identification of FIR models, which improves over existing bounds in the literature. The second result concerns the solution of the optimal input design problem for identification of a scalar gain. It is shown that the two contributions can be combined to construct suboptimal input signals for identification of FIR models of arbitrary order.
Keywords :
FIR filters; computational complexity; identification; FIR model; binary-valued sensor; optimal input design problem; system identification; time complexity; worst-case identification; Chemical sensors; Communication system traffic control; Control systems; Finite impulse response filter; Monitoring; Production systems; Sensor phenomena and characterization; Sensor systems; Time measurement; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2007.4434445
Filename :
4434445
Link To Document :
بازگشت