DocumentCode :
2823795
Title :
Incidence Adjacent Vertex-Distinguishing Total Coloring of Graphs
Author :
Zhang, Zhongfu ; Wang, Zhiwen ; Zhu, Enqiang ; Wen, Fei ; Li, Jingwen
Author_Institution :
Inst. of Appl. Math., Lanzhou Jiaotong Univ., Lanzhou, China
fYear :
2009
fDate :
11-13 Dec. 2009
Firstpage :
1
Lastpage :
4
Abstract :
Let G(V, E) be a simple graph, k is a positive integer, f is a mapping from V(G) ¿ E(G) to {1, 2, ..., k} such that ¿uv ¿ E(G), then f(u) ¿ f(v); ¿uv,vw ¿ E(G), u ¿ w,f(uv) ¿ f(vw); ¿uv ¿ E(G),C(u) ¿ C(v), we say that f is the incidence-adjacent vertex distinguishing total coloring of G. The minimum number of k is called the incidence-adjacent vertex distinguishing total chromatic number of G. Where C(u) = {f(u)}¿{f(uv)|uv ¿ E(G)}. In this paper, we discuss some graphs whose incidence-adjacent vertex distinguishing total chromatic number is just ¿, ¿ + 1, ¿ + 2, and present a conjecture that the incidence-adjacent vertex distinguishing total chromatic number of a graph is no more than ¿ + 2.
Keywords :
graph colouring; graph coloring; incidence adjacent vertex-distinguishing; positive integer; total chromatic number; Mathematics; Terminology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-4507-3
Electronic_ISBN :
978-1-4244-4507-3
Type :
conf
DOI :
10.1109/CISE.2009.5363740
Filename :
5363740
Link To Document :
بازگشت