DocumentCode :
2826997
Title :
Robust text detection in natural images with edge-enhanced Maximally Stable Extremal Regions
Author :
Chen, Huizhong ; Tsai, Sam S. ; Schroth, Georg ; Chen, David M. ; Grzeszczuk, Radek ; Girod, B.
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
2609
Lastpage :
2612
Abstract :
Detecting text in natural images is an important prerequisite. In this paper, we propose a novel text detection algorithm, which employs edge-enhanced Maximally Stable Extremal Regions as basic letter candidates. These candidates are then filtered using geometric and stroke width information to exclude non-text objects. Letters are paired to identify text lines, which are subsequently separated into words. We evaluate our system using the ICDAR competition dataset and our mobile document database. The experimental results demonstrate the excellent performance of the proposed method.
Keywords :
document image processing; edge detection; text analysis; edge enhanced maximally stable extremal regions; mobile document database; natural images; robust text detection; Conferences; Detection algorithms; Feature extraction; Image edge detection; Robustness; Transforms; Visualization; Text detection; connected component analysis; maximally stable extremal regions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6116200
Filename :
6116200
Link To Document :
بازگشت