Title :
A Novel Glove Monitoring System Used to Quantify Neurological Symptoms During Deep-Brain Stimulation Surgery
Author :
Houde Dai ; Otten, Bernward ; Mehrkens, Jan Hinnerk ; D´Angelo, Lorenzo T. ; Lueth, Tim C.
Author_Institution :
Inst. of Micro Technol. & Med. Device Technol., Tech. Univ. Munchen, Munich, Germany
Abstract :
Deep brain stimulation (DBS) surgery is most effective in reducing the symptoms of Parkinson´s disease and essential tremor. At present, there is no designated instrumental method for measuring the immediate effects of DBS. This paper presents the concept of a glove monitoring system for DBS. With the benefits of microelectromechanical systems, inertial measurement unit, and force sensitive resistor (FSR), the system is portable and can be integrated into a textile glove. Tremors, bradykinesia, and rigidity assessments are performed by the system. Several test tasks are chosen to be performed during DBS surgery to evaluate the electrode´s position and stimulation intensity. Each quantified symptom severity of the patient is added to a list shown in the graphical user interface for comparison. Comparative experiments between the prototype and an electromagnetic motion tracking system were presented. The FSR boxes were validated with weights. Experimental results show that this system is reliable for tremor amplitude determination, movement angles measurement, and resistance measurement to a passive movement. In addition, it can be found that inconsistent tremor movements have an influence on the tremor amplitude calculation done with power spectral density estimation.
Keywords :
bioMEMS; bioelectric phenomena; biomechanics; biomedical electrodes; brain; data gloves; graphical user interfaces; medical computing; medical disorders; patient monitoring; portable instruments; surgery; DBS surgery; Parkinson´s disease; bradykinesia; deep-brain stimulation surgery; electrode position; essential tremor; force sensitive resistor; glove monitoring system; graphical user interface; inertial measurement unit; microelectromechanical systems; movement angles measurement; neurological symptom quantification; passive movement; portable system; power spectral density estimation; quantified symptom severity; resistance measurement; rigidity assessments; stimulation intensity; textile glove; tremor amplitude calculation; tremor amplitude determination; Accelerometers; Force sensors; Grasping; Gyroscopes; Monitoring; Satellite broadcasting; MEMS IMU; bradykinesia; glove monitoring system; parkinson´s disease quantitative assessment; reliability testing; rigidity; tremor;
Journal_Title :
Sensors Journal, IEEE
DOI :
10.1109/JSEN.2013.2271775