DocumentCode :
2828945
Title :
Facial expression recognition using clustering discriminant Non-negative Matrix Factorization
Author :
Nikitidis, Symeon ; Tefas, Anastasios ; Nikolaidis, Nikos ; Pitas, Ioannis
Author_Institution :
Dept. of Inf., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
3001
Lastpage :
3004
Abstract :
Non-negative Matrix Factorization (NMF) is among the most popular subspace methods widely used in a variety of image processing problems. Recently, a discriminant NMF method that incorporates Linear Discriminant Analysis criteria and achieves an efficient decomposition of the provided data to its discriminant parts has been proposed. However, this approach poses several limitations since it assumes that the underline data distribution forms compact sets which is often unrealistic. To remedy this limitation we regard that data inside each class form various number of clusters and apply a Clustering based Discriminant Analysis. The proposed method combines appropriate discriminant constraints in the NMF decomposition cost function in order to address the problem of finding discriminant projections that enhance class separability in the reduced dimensional projection space. Experimental results performed on the Cohn-Kanade database verified the effectiveness of the proposed method in the facial expression recognition task.
Keywords :
face recognition; matrix decomposition; Cohn-Kanade database; clustering discriminant nonnegative matrix factorization; facial expression recognition; image processing problems; linear discriminant analysis; reduced dimensional projection space; Accuracy; Algorithm design and analysis; Conferences; Databases; Face recognition; Image processing; Vectors; Non-negative matrix factorization; clustering discriminant analysis; facial expression recognition; sub-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6116294
Filename :
6116294
Link To Document :
بازگشت