DocumentCode :
2828971
Title :
Dynamic memory model based optimization of scalar and vector quantizer for fast image encoding
Author :
Cheung, Gene ; McCanne, Steven
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
106
Abstract :
The rapid progress of computers and today´s heterogeneous computing environment means computation-intensive signal processing algorithms must be optimized for performance in a machine dependent fashion. We present formal machine-dependent optimizations of scalar and vector quantizer encoders. Using a dynamic memory model, the optimal computation-memory tradeoff is exploited to minimize the encoding time. Experiments show marked improvements over existing techniques
Keywords :
data compression; image coding; optimisation; vector quantisation; dynamic memory model based optimization; encoding time minimisation; fast image encoding; formal machine-dependent optimizations; heterogeneous computing environment; optimal computation-memory tradeoff; scalar quantizer encoder; signal processing algorithms; vector quantizer encoder; Algorithm design and analysis; Computational modeling; Costs; Encoding; High level languages; Image coding; Information retrieval; Pervasive computing; Quantization; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2000. Proceedings. 2000 International Conference on
Conference_Location :
Vancouver, BC
ISSN :
1522-4880
Print_ISBN :
0-7803-6297-7
Type :
conf
DOI :
10.1109/ICIP.2000.899306
Filename :
899306
Link To Document :
بازگشت