Title :
Environmental boundary tracking and estimation using multiple autonomous vehicles
Author :
Jin, Zhipu ; Bertozzi, Andrea L.
Author_Institution :
Univ. of California, Los Angeles
Abstract :
In this paper, we develop a framework for environmental boundary tracking and estimation by considering the boundary as a hidden Markov model (HMM) with separated observations collected from multiple sensing vehicles. For each vehicle, a tracking algorithm is developed based on page´s cumulative sum algorithm (CUSUM), a method for change- point detection, so that individual vehicles can autonomously track the boundary in a density field with measurement noise. Based on the data collected from sensing vehicles and prior knowledge of the dynamic model of boundary evolvement, we estimate the boundary by solving an optimization problem, in which prediction and current observation are considered in the cost function. Examples and simulation results are presented to verify the efficiency of this approach.
Keywords :
hidden Markov models; mobile robots; multi-robot systems; optimisation; sensor fusion; boundary estimation; change-point detection; cumulative sum algorithm; dynamic model; environmental boundary tracking; hidden Markov model; multiple autonomous vehicles; multiple sensing vehicles; optimization problem; Density measurement; Filters; Hidden Markov models; Mobile robots; Monitoring; Noise measurement; Remotely operated vehicles; Robot kinematics; Sea measurements; Vehicle dynamics; Boundary tracking and estimation; CUSUM; change-point detection; hidden Markov model; optimization;
Conference_Titel :
Decision and Control, 2007 46th IEEE Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-1497-0
Electronic_ISBN :
0191-2216
DOI :
10.1109/CDC.2007.4434857