DocumentCode
2830
Title
Efficient Multidimensional Harmonic Retrieval: A Hierarchical Signal Separation Framework
Author
Chun-Hung Lin ; Wen-Hsien Fang
Author_Institution
Dept. of Electron. & Comput. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
Volume
20
Issue
5
fYear
2013
fDate
May-13
Firstpage
427
Lastpage
430
Abstract
This paper presents a low-complexity one-dimensional (1-D) Unitary Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)-based algorithm for multidimensional harmonic retrieval (MHR) problems based on an HIerarchical Signal Separation (HISS) technique, which interleaves the parameter estimation and filtering processes. The filtering process not only progressively partitions the signals with close parameters into separate groups, but also reduces the power of the additive noise, both of which entail higher parameter estimation accuracy. The pairing of the estimated parameters is also automatically achieved. Simulations show that the new algorithm provides satisfactory performance compared with previous works but with drastically reduced computations.
Keywords
filtering theory; harmonics; matrix decomposition; parameter estimation; 1D unitary estimation; ESPRIT; HISS; MHR; additive noise; filtering process; hierarchical signal separation framework; multidimensional harmonic retrieval; rotational invariance technique; signal parameter estimation; subspace algorithm; Covariance matrix; Estimation; Harmonic analysis; Noise; Parameter estimation; Signal processing algorithms; Source separation; Filtering; M-D harmonic retrieval; low-complexity algorithm; parameter estimation; subspace algorithm;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/LSP.2013.2238528
Filename
6407770
Link To Document