• DocumentCode
    2830
  • Title

    Efficient Multidimensional Harmonic Retrieval: A Hierarchical Signal Separation Framework

  • Author

    Chun-Hung Lin ; Wen-Hsien Fang

  • Author_Institution
    Dept. of Electron. & Comput. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
  • Volume
    20
  • Issue
    5
  • fYear
    2013
  • fDate
    May-13
  • Firstpage
    427
  • Lastpage
    430
  • Abstract
    This paper presents a low-complexity one-dimensional (1-D) Unitary Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)-based algorithm for multidimensional harmonic retrieval (MHR) problems based on an HIerarchical Signal Separation (HISS) technique, which interleaves the parameter estimation and filtering processes. The filtering process not only progressively partitions the signals with close parameters into separate groups, but also reduces the power of the additive noise, both of which entail higher parameter estimation accuracy. The pairing of the estimated parameters is also automatically achieved. Simulations show that the new algorithm provides satisfactory performance compared with previous works but with drastically reduced computations.
  • Keywords
    filtering theory; harmonics; matrix decomposition; parameter estimation; 1D unitary estimation; ESPRIT; HISS; MHR; additive noise; filtering process; hierarchical signal separation framework; multidimensional harmonic retrieval; rotational invariance technique; signal parameter estimation; subspace algorithm; Covariance matrix; Estimation; Harmonic analysis; Noise; Parameter estimation; Signal processing algorithms; Source separation; Filtering; M-D harmonic retrieval; low-complexity algorithm; parameter estimation; subspace algorithm;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2013.2238528
  • Filename
    6407770