DocumentCode :
2830844
Title :
Robust visual tracking via ranking SVM
Author :
Bai, Yancheng ; Tang, Ming
Author_Institution :
Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
fYear :
2011
fDate :
11-14 Sept. 2011
Firstpage :
517
Lastpage :
520
Abstract :
In this paper, we tackle the tracking problem in a quite other viewpoint, ranking. First, the ranking SVM is employed to learn a ranking function. Then, the ranking function ranks every instance sampled from the next frame, and the instance with the most preferred ranking score is assumed to be the object. Experiments of extensively quantitative and qualitative comparisons on public videos show the superior performance of our tracker over several state-of-the-art tracking algorithms.
Keywords :
object tracking; support vector machines; video signal processing; public videos; ranking SVM; ranking function; visual tracking; Robustness; Support vector machines; Target tracking; Training; Videos; Visualization; Tracking; ranking; ranking SVM;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2011 18th IEEE International Conference on
Conference_Location :
Brussels
ISSN :
1522-4880
Print_ISBN :
978-1-4577-1304-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2011.6116395
Filename :
6116395
Link To Document :
بازگشت