• DocumentCode
    2834069
  • Title

    The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions

  • Author

    Kane, Daniel M.

  • Author_Institution
    Dept. of Math., Harvard Univ., Cambridge, MA, USA
  • fYear
    2010
  • fDate
    9-12 June 2010
  • Firstpage
    205
  • Lastpage
    210
  • Abstract
    We prove asymptotically optimal bounds on the Gaussian noise sensitivity of degree-d polynomial threshold functions. These bounds translate into optimal bounds on the Gaussian surface area of such functions, and therefore imply new bounds on the running time of agnostic learning algorithms.
  • Keywords
    Gaussian noise; optimisation; polynomials; Gaussian noise sensitivity; agnostic learning algorithms; degree-d polynomial threshold functions; gaussian surface area; noise sensitivity; optimal bounds; Computational complexity; Density measurement; Gaussian distribution; Gaussian noise; Gaussian processes; Mathematics; Noise measurement; Polynomials; Random variables; Switches; Gaussian noise; Polynomials;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Complexity (CCC), 2010 IEEE 25th Annual Conference on
  • Conference_Location
    Cambridge, MA
  • ISSN
    1093-0159
  • Print_ISBN
    978-1-4244-7214-7
  • Electronic_ISBN
    1093-0159
  • Type

    conf

  • DOI
    10.1109/CCC.2010.27
  • Filename
    5497886