DocumentCode :
2834294
Title :
Autonomous Robotics Self-Localization Using Genetic Algorithms
Author :
Gutierrez, F. ; Atkinson, J.
Author_Institution :
Dept. of Comput. Sci., Univ. de Concepcion, Concepcion, Chile
fYear :
2009
fDate :
2-4 Nov. 2009
Firstpage :
167
Lastpage :
170
Abstract :
In this work, a new approach for robotics self-location using constrained genetic algorithms is proposed. The model uses a location estimation stage based on Kalman filters so as to redefine the search space and finds the most accurate current position of a robot. Experiments show the promise of the method to predict for robotic applications.
Keywords :
Kalman filters; genetic algorithms; mobile robots; Kalman filters; autonomous robotics self-localization; constrained genetic algorithms; location estimation; Artificial intelligence; Filtering; Genetic algorithms; Intelligent robots; Motion measurement; Navigation; Orbital robotics; Performance evaluation; Robot sensing systems; Space technology; Autonomous robotics; genetic algorithms; self-location;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, 2009. ICTAI '09. 21st International Conference on
Conference_Location :
Newark, NJ
ISSN :
1082-3409
Print_ISBN :
978-1-4244-5619-2
Type :
conf
DOI :
10.1109/ICTAI.2009.30
Filename :
5364326
Link To Document :
بازگشت