DocumentCode :
2836267
Title :
Constructing 2n-1-Point Ternary Interpolatory Subdivision Schemes by Using Variation of Constants
Author :
Zheng, Hongchan ; Hu, Meigui ; Peng, Guohua
Author_Institution :
Dept. of Appl. Math., Northwestern Polytech. Univ., Xi´´an, China
fYear :
2009
fDate :
11-13 Dec. 2009
Firstpage :
1
Lastpage :
4
Abstract :
Based on Lagrange polynomials and variation of constants, we devise a novel 2n-1-point interpolatory ternary subdivision scheme that reproduces polynomials of degree 2n-2. We illustrate the technique with a 3-point ternary interpolatory subdivision scheme which can rebuild Hassan and Dodgson´s interpolating 3-point ternary subdivision scheme and a new 5-point ternary interpolatory subdivision scheme which can achieve C2-continuity. The smoothness of the new schemes is proved using Laurent polynomial method.
Keywords :
interpolation; polynomials; 2n-1-point ternary interpolatory subdivision scheme; 3-point ternary interpolatory subdivision scheme; 5-point ternary interpolatory subdivision scheme; C2-continuity; Lagrange polynomial; Laurent polynomial method; constants variation; schemes smoothness; Interpolation; Lagrangian functions; Mathematics; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-4507-3
Electronic_ISBN :
978-1-4244-4507-3
Type :
conf
DOI :
10.1109/CISE.2009.5364446
Filename :
5364446
Link To Document :
بازگشت