DocumentCode :
2836575
Title :
Robust M-estimates and generalized M-estimates for autoregressive parameter estimation
Author :
Basu, Anjan ; Paliwal, K.K.
Author_Institution :
Tata Inst. of Fundamental Res., Bombay, India
fYear :
1989
fDate :
22-24 Nov 1989
Firstpage :
355
Lastpage :
358
Abstract :
The problem of robust estimation of autoregressive parameters in the presence of outliers is considered. The least squares estimate lacks efficiency robustness when innovation outliers are present. Several M-estimates (maximum likelihood type) corresponding to different cost functions show good efficiency robustness against innovation outliers. The M-estimate with Welsch cost function is found to be the best in a comparative simulation study. However, in the case of additive outliers, M-estimates are not robust and they give large bias errors. Generalized M-estimates are recommended for the additive outlier case. A simulation study shows that a combination of Welsch function as the weight function and Andrews or Welsch function as the cost function produces the best performance in generalized M-estimates
Keywords :
estimation theory; parameter estimation; probability; Andrews function; Welsch cost function; additive outliers; autoregressive parameter estimation; cost function; generalized M-estimates; innovation outliers; maximum likelihood estimates; robust M-estimates; weight function; Cost function; Density functional theory; Gaussian distribution; Least squares methods; Maximum likelihood estimation; Parameter estimation; Robustness; Signal processing; Signal processing algorithms; Technological innovation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON '89. Fourth IEEE Region 10 International Conference
Conference_Location :
Bombay
Type :
conf
DOI :
10.1109/TENCON.1989.176958
Filename :
176958
Link To Document :
بازگشت