DocumentCode :
2840562
Title :
On the diameter of the generalized de Bruijn graphs UGB(n, n2+1)
Author :
Caro, Jaime D L ; Nochefranca, Luz R. ; Sy, Polly W.
Author_Institution :
Dept. of Comput. Sci., Univ. of the Philippines, Quezon, Philippines
fYear :
2000
fDate :
2000
Firstpage :
57
Lastpage :
61
Abstract :
The generalized de Bruijn graph UGB(n, n2+1) is the graph with vertex set V={0, 1, ..., n2} and the neighborhood N(i) of i∈V is N(i)=X(i)∩Y(i) where X(i)={in+d(modn2+1):α∈D and [(2i-αn)+(n2+1)Z]∩D=Ø}, Y(i)={(β-i)n(modn2+1):β∈D and [(β-2i)n+(n 2+1)Z]∩D=Ø}. In this paper, we show that the diameter of UGB(n, n2+1) is at most 4 for n odd and n⩾5
Keywords :
computational geometry; hypercube networks; generalized de Bruijn graphs; neighborhood; vertex set; Equations;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Architectures, Algorithms and Networks, 2000. I-SPAN 2000. Proceedings. International Symposium on
Conference_Location :
Dallas, TX
ISSN :
1087-4089
Print_ISBN :
0-7695-0936-3
Type :
conf
DOI :
10.1109/ISPAN.2000.900262
Filename :
900262
Link To Document :
بازگشت