DocumentCode :
284667
Title :
Cooccurrence smoothing for stochastic language modeling
Author :
Essen, Ute ; Steinbiss, Volker
Author_Institution :
Philips GmbH Forschungslaboratorien, Aachen, Germany
Volume :
1
fYear :
1992
fDate :
23-26 Mar 1992
Firstpage :
161
Abstract :
Training corpora for stochastic language models are virtually always too small for maximum-likelihood estimation, so smoothing the models is of great importance. The authors derive the cooccurrence smoothing technique for stochastic language modeling and give experimental evidence for its validity. Using word-bigram language models, cooccurrence smoothing improved the test-set perplexity by 14% on a German 100000-word text corpus and by 10% on an English 1-million word corpus
Keywords :
grammars; speech analysis and processing; speech recognition; stochastic processes; English; German; cooccurrence smoothing; maximum-likelihood estimation; speech recognition; stochastic language modeling; test-set perplexity; word-bigram language models; Context modeling; Estimation theory; Maximum likelihood estimation; Natural languages; Parameter estimation; Random variables; Smoothing methods; Speech recognition; Stochastic processes; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1520-6149
Print_ISBN :
0-7803-0532-9
Type :
conf
DOI :
10.1109/ICASSP.1992.225947
Filename :
225947
Link To Document :
بازگشت