DocumentCode :
2847017
Title :
An asymmetric small-gain technique to construct Lyapunov-Krasovskii functionals for nonlinear time-delay systems with static components
Author :
Ito, H.
Author_Institution :
Dept. of Syst. Design & Inf., Kyushu Inst. of Technol., Iizuka, Japan
fYear :
2011
fDate :
June 29 2011-July 1 2011
Firstpage :
4872
Lastpage :
4877
Abstract :
The standard ISS small-gain theorem and the recently-developed ISS small-gain theorem assume that system components are characterized in a symmetric way with respect to the equilibrium. Dissipative properties of a nonlinear system is usually asymmetric. Formulating them into symmetric properties sometimes causes crucial conservativeness. The purpose of this paper is to develop a technique to take the asymmetry into account in stability analysis of time-delay systems. The result is based on decomposition of a system into integral input-to-state stable dynamic components and static components characterized in an asymmetric way with respect to the equilibrium. A Lyapunov-Krasovskii functional establishing robustness with respect to disturbances in the presence of time delays is constructed, and its effectiveness is illustrated by a network flow control example. The proposed iISS methodology covers a broader class of systems than existing approaches based on operator norms or the ISS gain.
Keywords :
delay systems; networked control systems; nonlinear control systems; stability; Lyapunov-Krasovskii functional; asymmetric small-gain technique; dissipative property; input-to-state stability small-gain theorem; network flow control; nonlinear time-delay system; static component; symmetric property; system decomposition; Control systems; Delay; Indium tin oxide; Optimization; Robustness; Stability criteria;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2011
Conference_Location :
San Francisco, CA
ISSN :
0743-1619
Print_ISBN :
978-1-4577-0080-4
Type :
conf
DOI :
10.1109/ACC.2011.5990801
Filename :
5990801
Link To Document :
بازگشت