DocumentCode :
284879
Title :
Two-dimensional linear prediction and spectral estimation on a polar raster
Author :
Fang, Wen-Hsien
Author_Institution :
Dept. of Electron. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan
Volume :
3
fYear :
1992
fDate :
23-26 Mar 1992
Firstpage :
325
Abstract :
A zero-mean homogeneous random field is defined on a discrete polar raster. The problem is to estimate, given example values inside a disk of finite radius, the field´s power spectral density using linear prediction. A generalized autocorrelation procedure that guarantees positive semidefinite covariance estimates (required for a meaningful spectral density) is given. It first interpolates the data using Gaussians, computes its Radon transform, and applies familiar one-dimensional techniques to each slice. Some numerical examples are provided to justify the validity of the proposed procedure. A correlation matching covariance extension procedure that uses the Radon transform is proposed to extend a given set of covariance lags to the entire plane, when this is possible. Circumstances for which this is impossible are discussed
Keywords :
correlation methods; filtering and prediction theory; parameter estimation; signal processing; spectral analysis; transforms; Radon transform; correlation matching covariance extension procedure; discrete polar raster; generalized autocorrelation procedure; numerical examples; positive semidefinite covariance estimates; power spectral density; spectral estimation; two dimensional linear prediction; zero-mean homogeneous random field; Fourier transforms; Frequency estimation; Gaussian processes; Lattices; Parametric statistics; Power engineering and energy; Predictive models; Tomography; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1520-6149
Print_ISBN :
0-7803-0532-9
Type :
conf
DOI :
10.1109/ICASSP.1992.226235
Filename :
226235
Link To Document :
بازگشت