DocumentCode :
2850262
Title :
A Hybrid Optimization Method for Fuzzy Classification Systems
Author :
Wang, X. ; Gao, X.Z. ; Ovaska, S.J.
Author_Institution :
Dept. of Electr. Eng., Helsinki Univ. of Technol., Espoo
fYear :
2008
fDate :
10-12 Sept. 2008
Firstpage :
264
Lastpage :
271
Abstract :
This paper presents a hybrid optimization method based on the fusion of the clonal selection algorithm (CSA) and harmony search (HS) technique. The CSA is employed to improve the members of the harmony memory in the HS method. The hybrid optimization algorithm is further used to optimize a fuzzy classification system for the Fisher Iris data classification. Computer simulations results demonstrate the effectiveness of our new approach.
Keywords :
fuzzy set theory; optimisation; pattern classification; Fisher iris data classification; clonal selection algorithm; fuzzy classification systems; harmony memory; harmony search technique; hybrid optimization method; Clustering algorithms; Computer simulation; Design optimization; Electronic mail; Fuzzy sets; Fuzzy systems; Hybrid intelligent systems; Immune system; Iris; Optimization methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Hybrid Intelligent Systems, 2008. HIS '08. Eighth International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-0-7695-3326-1
Electronic_ISBN :
978-0-7695-3326-1
Type :
conf
DOI :
10.1109/HIS.2008.22
Filename :
4626640
Link To Document :
بازگشت