Title : 
Evolutionary algorithms for clustering gene-expression data
         
        
            Author : 
Hruschka, Eduardo R. ; de Castro, Leandro N. ; Campello, Ricardo J G B
         
        
            Author_Institution : 
Univ. Catolica de Santos, Brazil
         
        
        
        
        
        
            Abstract : 
This work deals with the problem of automatically finding optimal partitions in bioinformatics datasets. We propose incremental improvements for a clustering genetic algorithm (CGA) culminating in the evolutionary algorithm for clustering (EAC). The CGA and its modified versions are evaluated in five gene-expression datasets, showing that the proposed EAC is a promising tool for clustering gene-expression data.
         
        
            Keywords : 
biology; genetic algorithms; pattern clustering; bioinformatics; clustering genetic algorithm; evolutionary algorithms; gene-expression data clustering; Algorithm design and analysis; Bioinformatics; Clustering algorithms; Design optimization; Encoding; Evolutionary computation; Gene expression; Genetic algorithms; Partitioning algorithms; Pattern recognition;
         
        
        
        
            Conference_Titel : 
Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on
         
        
            Print_ISBN : 
0-7695-2142-8
         
        
        
            DOI : 
10.1109/ICDM.2004.10073