DocumentCode :
2850947
Title :
Evolutionary algorithms for clustering gene-expression data
Author :
Hruschka, Eduardo R. ; de Castro, Leandro N. ; Campello, Ricardo J G B
Author_Institution :
Univ. Catolica de Santos, Brazil
fYear :
2004
fDate :
1-4 Nov. 2004
Firstpage :
403
Lastpage :
406
Abstract :
This work deals with the problem of automatically finding optimal partitions in bioinformatics datasets. We propose incremental improvements for a clustering genetic algorithm (CGA) culminating in the evolutionary algorithm for clustering (EAC). The CGA and its modified versions are evaluated in five gene-expression datasets, showing that the proposed EAC is a promising tool for clustering gene-expression data.
Keywords :
biology; genetic algorithms; pattern clustering; bioinformatics; clustering genetic algorithm; evolutionary algorithms; gene-expression data clustering; Algorithm design and analysis; Bioinformatics; Clustering algorithms; Design optimization; Encoding; Evolutionary computation; Gene expression; Genetic algorithms; Partitioning algorithms; Pattern recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on
Print_ISBN :
0-7695-2142-8
Type :
conf
DOI :
10.1109/ICDM.2004.10073
Filename :
1410321
Link To Document :
بازگشت