DocumentCode :
2852581
Title :
Unsupervised signal restoration using Copulas and pairwise Markov chains
Author :
Brunel, N. ; Pieczynski, W.
Author_Institution :
CNRS UMR, Evry, France
fYear :
2003
fDate :
28 Sept.-1 Oct. 2003
Firstpage :
102
Lastpage :
105
Abstract :
This work is about the statistical restoration of hidden discrete signals. The problem we deal with is how to take into account, in recent pairwise and triplet Markov chain context, complex noises that can be non-Gaussian, correlated, and of class-varying nature. We propose to solve this modeling problem using Copulas. The interest of the new modeling is validated by experiments performed in supervised and unsupervised context. In the latter, all parameters are estimated from the only observed data by an original method.
Keywords :
Markov processes; noise; parameter estimation; signal restoration; Copulas method; complex noise; hidden discrete signal; pairwise Markov chains; statistical restoration; stochastic process; unsupervised signal restoration; Bayesian methods; Context modeling; Hidden Markov models; Parameter estimation; Probability; Signal processing; Signal restoration; Stochastic processes; Writing; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2003 IEEE Workshop on
Print_ISBN :
0-7803-7997-7
Type :
conf
DOI :
10.1109/SSP.2003.1289350
Filename :
1289350
Link To Document :
بازگشت