DocumentCode :
2853026
Title :
A weighted principal component regression approach for system identification
Author :
Xiao, Xinshu ; Mukkamala, R. ; Cohen, Richard J.
Author_Institution :
Harvard-MIT Div. of Health Sci. & Technol., Cambridge, MA, USA
fYear :
2003
fDate :
28 Sept.-1 Oct. 2003
Firstpage :
206
Lastpage :
209
Abstract :
In this paper, we present a parametric LTI system identification approach, which is based on weighted principal component regression (PCR). It can be shown that this method asymptotically implements model selection in the frequency domain and allows the data to play a significant role in determining the candidate models. Moreover, the estimates of the optimal model parameters reflect a trade-off between bias and variance to reach a relatively small mean squared prediction error. Compared with the conventional autoregressive exogenous input (ARX) identification, our approach is shown to identify the system´s impulse response function more accurately when the input signal is colored.
Keywords :
least mean squares methods; parameter estimation; principal component analysis; regression analysis; mean squared prediction error; system identification; weighted principal component regression; Autocorrelation; Delay effects; Frequency domain analysis; Personal communication networks; Predictive models; Regression analysis; Signal processing; Singular value decomposition; System identification; Time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2003 IEEE Workshop on
Print_ISBN :
0-7803-7997-7
Type :
conf
DOI :
10.1109/SSP.2003.1289380
Filename :
1289380
Link To Document :
بازگشت