DocumentCode :
2853693
Title :
The embedded triangles algorithm for distributed estimation in sensor networks
Author :
Delouille, V. ; Neelamani, R. ; Chandrasekaran, Visweshwar ; Baraniuk, R.G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
fYear :
2003
fDate :
28 Sept.-1 Oct. 2003
Firstpage :
371
Lastpage :
374
Abstract :
We propose a new iterative distributed estimation algorithm for Gaussian hidden Markov graphical models with loops. We decompose a loopy graph into a number of linked embedded triangles and then apply a parallel block-Jacobi iteration comprising local linear minimum mean-square-error estimation on each triangle (involving a simple 3x3 matrix inverse computation) followed by an information exchange between neighboring nodes and triangles. A simulation study demonstrates that the algorithm converges extremely rapidly, outperforming a number of existing algorithms. Embedded triangles are simple, local, scalable, fault-tolerant, and energy-efficient, and thus ideally suited for wireless sensor networks.
Keywords :
Gaussian processes; fault tolerance; hidden Markov models; least mean squares methods; wireless sensor networks; Gaussian hidden Markov graphical models; distributed estimation; embedded triangles algorithm; fault-tolerant; information exchange; iterative distributed estimation algorithm; linear minimum mean-square-error estimation; matrix inverse computation; parallel block-Jacobi iteration; sensor networks; wireless sensor networks; Computational modeling; Concurrent computing; Embedded computing; Energy efficiency; Fault tolerance; Graphical models; Hidden Markov models; Iterative algorithms; Matrix decomposition; Wireless sensor networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2003 IEEE Workshop on
Print_ISBN :
0-7803-7997-7
Type :
conf
DOI :
10.1109/SSP.2003.1289422
Filename :
1289422
Link To Document :
بازگشت