DocumentCode :
2854763
Title :
Optimal partitioning of ultrasonic data for fatigue damage detection?
Author :
Singh, D.S. ; Sarkar, S. ; Gupta, S. ; Ray, A.
Author_Institution :
Dept. of Mech. Eng., Pennsylvania State Univ., University Park, PA, USA
fYear :
2011
fDate :
June 29 2011-July 1 2011
Firstpage :
798
Lastpage :
803
Abstract :
This paper presents an analytical tool for online fatigue damage detection in polycrystalline alloys that are commonly used in mechanical structures. The underlying theory is built upon symbolic dynamic filtering (SDF) that optimally partitions time series data for feature extraction and pattern classification. The proposed method has been experimentally validated on a fatigue test apparatus that is equipped with ultrasonics sensors and a traveling optical microscope for fatigue damage detection.
Keywords :
acoustic signal processing; fatigue; fatigue testing; feature extraction; filtering theory; pattern classification; sensors; structural engineering; ultrasonic applications; SDF; fatigue test apparatus; feature extraction; mechanical structures; online fatigue damage detection; optimal partitioning; pattern classification; polycrystalline alloys; symbolic dynamic filtering; time series data; traveling optical microscope; ultrasonic data; ultrasonic sensors; underlying theory; Acoustics; Fatigue; Feature extraction; Optimization; Sensors; Time series analysis; Training; Damage Classification; Fatigue Crack Initiation; Optimal feature extraction; Pattern Identification; Symbolic Dynamics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2011
Conference_Location :
San Francisco, CA
ISSN :
0743-1619
Print_ISBN :
978-1-4577-0080-4
Type :
conf
DOI :
10.1109/ACC.2011.5991263
Filename :
5991263
Link To Document :
بازگشت