DocumentCode :
2854874
Title :
Comparison of particle swarm and simulated annealing algorithms for induction motor fault identification
Author :
Ethni, S.A. ; Zahawi, B. ; Giaouris, D. ; Acarnley, P.P.
Author_Institution :
Sch. of Electr., Electron. & Comput. Eng., Newcastle Univ., Newcastle upon Tyne, UK
fYear :
2009
fDate :
23-26 June 2009
Firstpage :
470
Lastpage :
474
Abstract :
The performance of two stochastic search methods, particle swarm optimisation (PSO) and simulated annealing (SA), when used for fault identification of induction machine stator and rotor winding faults, is evaluated in this paper. The proposed condition monitoring technique uses time domain terminal data in conjunction with the optimization algorithm to indicate the presence of a fault and provide information about its nature and location. The technique is demonstrated using experimental data from a laboratory machine.
Keywords :
induction motors; particle swarm optimisation; simulated annealing; condition monitoring technique; induction machine stator; induction motor fault identification; optimization algorithm; particle swarm optimisation; rotor winding faults; simulated annealing; stochastic search methods; time domain terminal data; Fault diagnosis; Induction machines; Induction motors; Optimization methods; Particle swarm optimization; Rotors; Search methods; Simulated annealing; Stators; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Informatics, 2009. INDIN 2009. 7th IEEE International Conference on
Conference_Location :
Cardiff, Wales
ISSN :
1935-4576
Print_ISBN :
978-1-4244-3759-7
Electronic_ISBN :
1935-4576
Type :
conf
DOI :
10.1109/INDIN.2009.5195849
Filename :
5195849
Link To Document :
بازگشت