DocumentCode :
2854958
Title :
Mean-square joint state and parameter estimation for uncertain nonlinear polynomial stochastic systems
Author :
Basin, M. ; Loukianov, A. ; Hernandez-Gonzalez, M.
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, San Nicolas de los Garza, Mexico
fYear :
2011
fDate :
June 29 2011-July 1 2011
Firstpage :
626
Lastpage :
631
Abstract :
This paper presents the mean-square joint state filtering and parameter identification problem for uncertain nonlinear polynomial stochastic systems with unknown parameters in the state equation over nonlinear polynomial observations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The obtained mean-square filter for the extended state vector also serves as the mean square identifier for the unknown parameters. Performance of the designed mean-square state filter and parameter identifier is verified for both, positive and negative, parameter values.
Keywords :
mean square error methods; nonlinear control systems; parameter estimation; stochastic processes; stochastic systems; uncertain systems; Wiener process; extended state vector; mean square identifier; mean-square joint state filtering; mean-square state filter; nonlinear polynomial observation; parameter estimation; parameter identification; state equation; uncertain nonlinear polynomial stochastic system; Joints; Mathematical model; Polynomials; Stochastic systems; Tensile stress; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2011
Conference_Location :
San Francisco, CA
ISSN :
0743-1619
Print_ISBN :
978-1-4577-0080-4
Type :
conf
DOI :
10.1109/ACC.2011.5991272
Filename :
5991272
Link To Document :
بازگشت