DocumentCode :
2855118
Title :
Constructions of Quantum Codes Based on Quadratic Residues
Author :
Guo, Ying ; Liu, Yangye ; Chen, Zhigang ; Huang, Chengrong
Author_Institution :
Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China
Volume :
6
fYear :
2009
fDate :
14-16 Aug. 2009
Firstpage :
514
Lastpage :
518
Abstract :
In this paper, we illustrate how to simplify the constructions of quantum error-correction codes via the quadratic residues. The suggested quantum code, which is the stabilizer quantum code generated from an Abelian group with the basis being commutative quantum operators selected from rows of an Pauli block matrix, does not require the dual-containing (or self-orthogonal) constraint necessary for the standard quantum error-correction code, thus allowing us to construct a quantum code with the large codeword length.
Keywords :
error correction codes; group theory; matrix algebra; quantum computing; Abelian group; Pauli block matrix; codeword length; commutative quantum operators; quadratic residues; quantum error-correction codes construction; stabilizer quantum code; Code standards; Cryptography; Error correction codes; Galois fields; Image coding; Information science; Parity check codes; Quantum computing; Quantum mechanics; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2009. ICNC '09. Fifth International Conference on
Conference_Location :
Tianjin
Print_ISBN :
978-0-7695-3736-8
Type :
conf
DOI :
10.1109/ICNC.2009.113
Filename :
5365647
Link To Document :
بازگشت