DocumentCode :
2855208
Title :
Bayesian volatility forecasting in the Tehran stock market
Author :
Amiri, Esmail
Author_Institution :
Dept. of Stat., Imam Khomeini Int. Univ., Ghazvin, Iran
fYear :
2010
fDate :
18-20 June 2010
Firstpage :
80
Lastpage :
84
Abstract :
In a Bayesian approach, we compare the volatility forecasting ability of ARCH, GARCH and stochastic volatility(SV) models, using daily Tehran stock market exchange data(TSE). To estimate the parameters of the models, Markov chain Monte Carlo(MCMC) methods is applied. The results show that the SV models perform better than the ARCH and GARCH family.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; autoregressive processes; stock markets; ARCH model; Bayesian volatility forecasting; GARCH model; Markov chain Monte Carlo method; Tehran stock market; stochastic volatility model; Bayesian methods; Data engineering; Economic forecasting; Investments; Parameter estimation; Predictive models; Security; Statistics; Stochastic processes; Stock markets; ARCH; Bayesian; GARCH; Markov chain Monte Carlo methods; Smooth transition autoregressive; Stochastic volatility;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Financial Theory and Engineering (ICFTE), 2010 International Conference on
Conference_Location :
Dubai
Print_ISBN :
978-1-4244-7757-9
Electronic_ISBN :
978-1-4244-7759-3
Type :
conf
DOI :
10.1109/ICFTE.2010.5499420
Filename :
5499420
Link To Document :
بازگشت