Title :
Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches
Author :
Li, Dongheng ; Winfield, David ; Parkhurst, Derrick J.
Author_Institution :
Iowa State University
Abstract :
Knowing the user’s point of gaze has significant potential to enhance current human-computer interfaces, given that eye movements can be used as an indicator of the attentional state of a user. The primary obstacle of integrating eye movements into today’s interfaces is the availability of a reliable, low-cost open-source eye-tracking system. Towards making such a system available to interface designers, we have developed a hybrid eye-tracking algorithm that integrates feature-based and model-based approaches and made it available in an open-source package. We refer to this algorithm as "starburst" because of the novel way in which pupil features are detected. This starburst algorithm is more accurate than pure feature-based approaches yet is signi?cantly less time consuming than pure modelbased approaches. The current implementation is tailored to tracking eye movements in infrared video obtained from an inexpensive head-mounted eye-tracking system. A validation study was conducted and showed that the technique can reliably estimate eye position with an accuracy of approximately one degree of visual angle.
Keywords :
Algorithm design and analysis; Availability; Computer interfaces; Computer vision; Costs; Hardware; Human computer interaction; Keyboards; Open source software; Tracking;
Conference_Titel :
Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on
Conference_Location :
San Diego, CA, USA
Print_ISBN :
0-7695-2372-2
DOI :
10.1109/CVPR.2005.531